• 1. High Thermal Stability: Alumina crucibles can withstand extreme temperatures, often exceeding 1700°C, without deforming or melting. This makes them ideal for use in processes that involve intense heat. 2. Chemical Inertness: Alumina is highly resistant to corrosion and chemical reactions with most acids, bases, and molten metals. This inertness ensures that the crucible does not contaminate the contents, maintaining the purity of the materials being processed. 3. High Mechanical Strength: The high density and mechanical strength of alumina make these crucibles durable and resistant to wear, even under harsh operating conditions. 4. Excellent Thermal Shock Resistance: Alumina crucibles can endure rapid temperature changes without cracking or breaking, which is crucial in processes that involve frequent heating and cooling cycles. 5. Low Thermal Conductivity: Alumina has low thermal conductivity, which helps in maintaining consistent temperatures within the crucible, thus ensuring uniform processing conditions.
    Send Email More
  • 1. High Thermal Stability:Alumina crucibles excel in maintaining structural integrity at elevated temperatures, withstanding heat up to 1600°C or higher depending on specific grades and formulations. 2. Chemical Inertness: Resistant to most acids, bases, and solvents, alumina crucibles provide a non-reactive environment essential for handling reactive substances and conducting precise chemical reactions. 3. Mechanical Durability: With superior mechanical properties, including high hardness and abrasion resistance, alumina crucibles exhibit remarkable resilience to physical stress, ensuring longevity and reliability in laboratory operations. 4. Uniform Heating: Their excellent thermal conductivity promotes uniform heating distribution, essential for consistent experimental results and minimizing temperature differentials within the crucible.
    Send Email More
  • 1. High temperature resistance:1600℃ in long use,1800℃ in short use. This makes it an ideal solution for various thermal processing applications. 2. Excellent thermal shock resistance: Alumina crucibles boat have excellent thermal shock resistance, which means they can withstand rapid changes in temperature without cracking or breaking. 3. Non-reactive: Alumina crucibles boat are non-reactive, which means they won't react with the substances being heated, melted or cast inside them, ensuring the purity of the final product. 4. Corrosion and Chemical Resistance: The ceramic material used in the alumina crucible boat exhibits excellent chemical resistance and resistance to corrosion. As a result, it can handle harsh chemicals and acids that might otherwise damage other materials. 5. Minimal Thermal Expansion: The alumina crucible boat has minimal thermal expansion, which means that it will maintain its shape and size at high temperatures, avoiding any potential risks of.
    Send Email More